
University of Ljubljana, Faculty of Electrical Engineering

Laboratory of Imaging Technologies

Biomedical Informatics
LABORATORY PRACTICE

Tomaž Vrtovec

2012

University of Ljubljana, Faculty of Electrical Engineering

Laboratory of Imaging Technologies

Biomedical Informatics
LABORATORY PRACTICE

Tomaž Vrtovec

2012

Kazalo

Lab Work 1: Introduction to Matlab . 1

Lab Work 2: Electrocardiography (ECG) . 3

Lab Work 3: The DICOM Standard . 5

Lab Work 4: Cryptography . 9

Lab Work 5: Binary Classification . 11

Lab Work 6: Electronic Health Record . 15

Lab Work 7: Image Edge Detection . 19

Lab Work 8: Sequence Alignment . 23

iii

University of Ljubljana, Faculty of Electrical Engineering

Master’s study programme in Electrical Enginnering (level 2)

Biomedical Engineering - Biomedical Informatics (64209) - Laboratory practice

Lab Work 1: Introduction to Matlab

Instructions

The purpose of this introductory lab work is to learn how to handle the variables and use the
basic commands and function within the Matlab programming environment. Your task is to
develop an algorithm for sorting random numbers according to the principle of bubble sort.

1. Generate a vector of unsorted numbers by using the function randperm(), where the input
argument N represents the number of elements in the vector that can be assigned integer
values between 1 and N, while the output argument is a row vector of unsorted numbers.

2. Write a function for sorting random numbers according to the principle of bubble sort:

function oVector = bubbleSort(iVector),

where the input argument iVector is the vector of unsorted numbers, while the output ar-
gument oVector is the vector of sorted numbers. Both vectors are of course of the same size.

3. Write a function for displaying the obtained results:

function displayResults(iVector, iColor, iName),

where the input argument iVector is an arbitrary chosen vector of numbers that you wish
to display, iColor is the display color (e.g. ’r’ for red, ’b’ for blue, etc.), and iName is the
title of the display figure. Use the function plot() and adapt the display by commands
axis and grid, and functions title(), xlabel() and ylabel().

4. Verify the bubble sort algorithm with vectors of size N = 50 and N = 1000.

Questions

The report includes handwritten (without using the computer) answers to the following questi-
ons, while the required images can be printed and enclosed in the report.

1. Enclose a picture that shows the position of each element in the vector against the value
of that element before and after sorting, but for the vector of size N = 50.

2. Enclose a picture that shows the position of each element in the vector against the value
of that element before and after sorting, but for the vector of size N = 1000.

1

University of Ljubljana, Faculty of Electrical Engineering

Master’s study programme in Electrical Enginnering (level 2)

Biomedical Engineering - Biomedical Informatics (64209) - Laboratory practice

Lab Work 2: Electrocardiography (ECG)

Instructions

Electrocardiography (ECG) is a non-invasive measurement of the electircal activity of the heart
over time as detected by electrodes attached to the skin surface. The graphical representation
of such measurement is an electrocardiogram (also ECG), which consists of typical periodical
signals that describe the heart beat and that are composed of the P wave, QRS complex (Q
wave, R wave and S wave) and T wave, and of intermediate PQ and ST segments. Your task
is to retrieve typical ECG data from a publicly available ECG database and determine some of
the basic parameters of the heart beat by applying time-domain analysis.

1. Go to the webpage PhysioNet (http://www.physionet.org) and choose “PhysioBank” →
“Signal Archives” → “ECG”, and then the ECG database “European ST-T Database”.
After that save the chosen ECG data, namely the description file (*.hea) and the data
file (*.dat). By using the program ecg2mat eng.m, convert the saved ECG data from 212
format (*.dat) into Matlab binary format (*.mat) while setting the start observation time
to 0 s and the end observation time to 5 s.

2. Load the obtained binary data into the Matlab environment by using the function load().
The loaded data represents a structure (e.g. ecg) that consists of the description of both
ECG signals(ecg.desc1 and ecg.desc2), both signal data (ecg.signal1 and ecg.signal2)
and the corresponding time (ecg.time) over which the signal samples were acquired.
Choose the signal that represents the 4th precordial (thoracic) lead (V4) and display it on
screen.

3. Write a function for searching of the peaks of the Q wave, R wave in S wave in the QRS
complex:

function [oIdxQ, oIdxR, oIdxS] = detectWavePeaksQRS(iData),

where the input argument iData represents the vector of data samples, while the output
arguments oIdxQ, oIdxR and oIdxS represent the vectors of locations (indices) of the peaks
of the Q wave, R wave and S wave in the vector of data samples. Take into account
that the R wave is the maximum in the area where the values are larger than 50% of the
range of ECG data, while the Q wave and the S wave represent the first minimum on
the left and right side of the R wave, respecitvely. Display the obtained locations and
corresponding values of the wave peaks on screen into the same figure as the ECG signal.

4. Write a function for searching of the peaks of the P and T wave:

function [oIdxP, oIdxT] = detectWavePeakPT(iData, iIdxQ, iIdxS),

where the input argument iData represents the vector of data samples, while iIdxQ and
iIdxS represent the locations (indices) of the peaks of the Q wave and S wave, respectively,
in the vector of data samples. The output arguments oIdxP and oIdxT represent the
locations (indices) of the peaks of the P wave and Y wave, respectively, in the vector of

3

http://www.physionet.org

data samples. Take into account that the P wave occurs on the left side of the Q wave at
a location that is from the Q wave distant at most for one third of the distance between
the peak of the Q wave and the peak of the previous S wave. Similarly, take into account
the T wave occurs on the right side of the S wave at a location that is from the S wave
distant at most for one third of the distance between the peak of the S wave and the peak
of the next Q wave. Display the obtained locations and corresponding values of the wave
peaks on screen into the same figure as the ECG signal.

5. Write a function to determine the heart beat on the basis of a selected signal wave:

function [oHB_avg, oHB_std, oHF_avg, oHF_std] = computeHeartBeat(iTime, iIdx),

where the input argument iTime represents the vector of time values over which the data
samples were acquired, while iIdx represents the locations (indices) of the peaks of the
selected wave in the vector of data samples. The output arguments oHB_avg and oHB_std

represent the mean period and the corresponding standard deviation, respectively, of
the occurence of the peak of the selected wave (in seconds), while oHF_avg and oHF_std

represent the mean frequency and the corresponding standard deviation, respectively, of
the occurence of the peak of the selected wave (in hertzs).

Questions

The report includes handwritten (without using the computer) answers to the following questi-
ons, while the required images can be printed and enclosed in the report.

1. Set the start observation time to 0 s and the end observation time to 5 s (experiment 1),
50 s (experiment 2) and 500 s (experiment 3). For each experiment, enclose the picture of
the ECG signal and the peaks of the Q, R and S wavevs in the QRS complex, and the
peaks of the P and T wave.

2. For each experiment and for each wave, write down the mean frequencies and the
corresponding standard deviations (in units of beats per minute) of the occurence of the
peak of the wave. Which wave has the most variable frequency? What was the basis for
your answer? What is the cause of the variability?

3. Why is the size of the data file (*.dat) exactly 5.400.000 bytes?

Additional Problems

The answers to the following questions do not need to be enclosed in the report, but should
serve for a better understanding of the topic.

Enclose the picture of the selected ECG signal, displayed on a “virtual” ECG graph paper where
you take into account the standardized block size. You can set the coordinate axis ratio by using
the Matlab function dascpect([dx dy 1]), where dx and dy represent the size of the block in x
and y directions, respectively. For a reasonable display, set the start observation time to 0 s and
the end observation time to 5 s.

4

University of Ljubljana, Faculty of Electrical Engineering

Master’s study programme in Electrical Enginnering (level 2)

Biomedical Engineering - Biomedical Informatics (64209) - Laboratory practice

Lab Work 3: The DICOM Standard

Instructions

The DICOM standard (digital imaging and communications in medicine) is established among
the manufacturers of medical imaging equipment as well as within healthcare institutions for
storage and review of medical images.

The given file imageXY.dcm contains an image, acquired by the magentic resonance (MR) imaging
technique. According to the specifications of the DICOM standard, extract the selected data
elements from the file. To determine the data elements you can use the group tags in the file
dcmGroups.mat, the element tags in the file dcmElements.mat and the tag descriptions in the file
dcmRepresentations.mat. Load the files by using the Matlab function load(), each of the loaded
structures S contains a variable S.code with the code and a variable S.desc with the description.

1. Write a function for loading the DICOM file:

function oData = loadDicomFile(iPath),

where the input argument iPath represents the path (folder and filename) to the DICOM
file. The output argument oData represents the data in the DICOM file in the form
of a row vector, individually for each byte of the data. Use Matlab fucntions fopen(),
fread() and fclose() to read the data, where you take into account the data type ’uint8’

(unsigned 8-bit integer).

2. Write a function for retrieving the data element from the data in the DICOM file:

function oElement = getDicomDataElement(iData, iTag),

where the input argument iData represents the data in the DICOM file, while iTag repre-
sents the tag of the data element in the form of (group,element) = (gggg,eeee). The output
argument oElement is in the form of a structure that contains the following variables, which
correspond to the data element:

- oElement.idx is the index of the beginning of the data element in the vector of DICOM
data, e.g. 585.

- oElement.tag is the tag of the data element in the form of
(group,element) = (gggg,eeee), e.g. ’0008,0023’.

- oElement.VR is the value representation (VR) of the data element, e.g. ’DA’ (represents
the date).

- oElement.VL is the value length (VL) of the data element in bytes, e.g. 8.

- oElement.value is the value of the data element, e.g. ’20120516’.

To convert numbers from decimal to hexadecimal numeral system, or vice versa, use the
Matlab functions dec2hex() and hex2dec() (e.g. dec2hex(35) = ’23’ and dec2hex(35, 4)

= ’0023’; hex2dec(’23’) = 35 and hex2dec(’0023’) = 35).

To convert numbers to text strings use the Matlab function char() (e.g. char(68) = ’D’

and char([68, 65]) = ’DA’).

5

3. Adjust the output argument oElement.value of the function getDicomDataElement() so
that it will match the value represenation (VR) given by oElement.VR. For this purpose,
write a function:

function oValue = convertDicomValue(iValue, iVR),

where the input argument iValue is the value, while iVR is the value representation of the
data element. The output argument oValue represents the adequatly converted value of
the data element. Consider the following value representation codes: AS, CS, DA, DS,
LO, PN, SH, ST, TM, UL and US.

Example: If the value representation code is oElement.VR = ’DA’ and the value is
oElement.value = [50, 48, 49, 50, 48, 53, 49, 54], then the adequate conversion is
by using the Matlab function char() to produce the date (code DA) oElement.value =

’20120516’ in the form of YYYYMMDD.

4. Display the image by using the enclosed function displayDicomImage(iData), where the
input argument iData represents the data in the DICOM file.

Questions

The report includes handwritten (without using the computer) answers to the following questi-
ons, while the required images can be printed and enclosed in the report.

1. Write down the filename of the selected DICOM file.

2. Retrieve the data elements that are stored in the group Study Information. Write down
the values for the Image Date, Modality, Manufacturer and Institution Name. For each
value, write down also the location (index) of the beginning of the data element in the
vector of DICOM data, the tag in the form of (gggg,eeee), the value representation (VR)
and the value length (VL, in bytes).

3. Retrieve the data elements that are stored in the group Patient Information. Write down
the values for the Patient’s Name, Patient’s Birth Date, Patient’s Sex, Patient’s Age and
Patient’s Weight. For each value, write down also the location (index) of the beginning
of the data element in the vector of DICOM data, the tag in the form of (gggg,eeee), the
value representation (VR) and the value length (VL, in bytes).

4. Retrieve the data elements that are stored in the group Imag Information. Write down
the values for the Rows, Columns, Bits Allocated, Window Center and Window Width.
For each value, write down also the location (index) of the beginning of the data element
in the vector of DICOM data, the tag in the form of (gggg,eeee), the value representation
(VR) and the value length (VL, in bytes).

5. Enclose the picture of the image that is stored in the selected DICOM file.

6

6. What is the size (in bytes) of . . . :

- . . . the selected DICOM file?

- . . . the image data?

- . . . all data except the image data?

- . . . all data elements?

Please provide a suitable explanation for the answers.

7. Write down the text that is stored between byte 129 and byte 132 in the selected DICOM
file. What can you conclude on the basis of the obtained text?

Additional Problems

The answers to the following questions do not need to be enclosed in the report, but should
serve for a better understanding of the topic.

Adjust the output argument oElement of the function getDicomDataElement() so that you deter-
mine also:

- oElement.group is the name of the tag group that can be accesses through the file dcmGro-

ups.mat. The obtained structure determines the groups, e.g. at location 6 is G.code{6} =

’0028’ and the corresponding description is G.desc{6} = ’Image Information’.

- oElement.element is the name of the tag that can be accessed through the file dcmEle-

ments.mat. The obtained structure determines the elements, e.g. at location 96 is E.code{96}
= ’0028,0100’ and the corresponding description is E.desc{96} = ’Bits Allocated’.

7

University of Ljubljana, Faculty of Electrical Engineering

Master’s study programme in Electrical Enginnering (level 2)

Biomedical Engineering - Biomedical Informatics (64209) - Laboratory practice

Lab Work 4: Cryptography

Instructions

Criptography is a scientific field of the practice and study of techniques for secure communication,
related to various aspects of data security, privacy and confidentiality. Basing on a simple
algorithm and secret key, encrypt and decrypt the given text, and transform the results into a
useable form according to the Base64 scheme encoding.

1. Write a function for the encryption of a text message according to the secret key:

function oText = encryptText(iText, iKey),

where the input argument iText represents the plaintext, and iKey represents the encryp-
tion key. The output argument oText represents the ciphertext. To encrypt, sum the
numerical values of the plaintext and of the encryption key, and if necessary, repeat the
the encryption key to the length of the plaintext. Then encode the ciphertext with the
Base64 scheme, for which you write a function:

function oText = encodeBase64(iText),

where the input argument iText represents the initial text, while the output argument
oText represents the encoded text.

To determine the numerical values for text characters, use the Matlab function
unicode2native(), while to determine the text characters for numerical values, use the
Matlab function native2unicode(). To convert between the decimal and binary base
use Matlab functions dec2bin() and bin2dec(). The numerical values and correspon-
ding text characters for the Base64 encoding scheme can be obtained from the file
tableBASE64.mat (e.g. the structure BASE64), where BASE64.charCode represents nume-
rical values and BASE64.charSymbol represents the corresponding text characters (e.g.
BASE64.charCode(13) = 12 and BASE64.charSymbol(13) = ’M’.

2. Write a function for the decryption of a text message according to the secret key:

function oText = decryptText(iText, iKey),

here the input argument iText represents the ciphertext, and iKey represents the decryp-
tion key. The output argument oText represents the plaintext. To decrypt, subtract the
numerical values of the decryption key from the numerical values of the ciphertext, where
if necessary, you repeat the length of the decryption key to reach the length of the cipher-
text. Before decryption, the ciphertext has to be decoded with the Base64 scheme, where
the padding bytes are represented by the character ’=’, for which you write a function:

function oText = decodeBase64(iText),

where the input argument iText represents the initial text, while the output argument
oText represents the decoded text.

The procedure is reversed when compared to the encryption, therefore you can use the
same Matlab function as described under 1.

9

3. Write a function that loads the text message from a given text file:

function oText = loadText(iPath),

where the input argument iPath represents the path (folder and filename) to the text file,
while the output argument oText represents the text message in the form of a row vector.

The data can be read by using Matlab functions fopen(), fread() and fclose(), and
by taking into account the data type ’uint8’ (unsigned 8-bit integers), which can be
transformed into text characters by using the Matlab function native2unicode().

Questions

The report includes handwritten (without using the computer) answers to the following questi-
ons, while the required images can be printed and enclosed in the report.

1. Load the plaintext from the file plainText eng.txt, then encrypt it with the above describe
algorithm by using the string ’encryption’ for the secret key, and finally encode it according
to the Base64 scheme. Write down the plaintext and the obtained ciphertext.

2. Load the ciphertext from the file cihperText eng.txt, then decode it according to the Base64
scheme, and finally decrypt it with the above described algorithm by using the string
’decryption’ for the secret key. Write down the ciphertext and the obtained plaintext.

3. What is the length (in bytes) of . . . :

- . . . the plaintext in file plainText eng.txt?

- . . . the encrypted and encoded plaintext?

- . . . the ciphertext in file cipherText eng.txt?

- . . . the decoded and decrypted ciphertext?

Provide adequate arguments for your answers in connection to the lenght of the initial
message (plaintext or ciphertext).

4. Why is it useful to encode the results according to the Base64 scheme? Provide adequate
arguments for your answer.

Additional Problems

The answers to the following questions do not need to be enclosed in the report, but should
serve for a better understanding of the topic.

The file secretText eng.txt contains a chipertext that was encrypted with the above described
algorithm by using an unknown secret key. By using the brute force search (trying out all
possible combinations), decrypt the secret text and find the secret key, if you know that the
plaintext contains the word “Janez” and that the length of the secret key is 3 alphabet characters
(lower case or upper case). To search for the string of characters within a text you can use the
Matlab function strfind().

10

University of Ljubljana, Faculty of Electrical Engineering

Master’s study programme in Electrical Enginnering (level 2)

Biomedical Engineering - Biomedical Informatics (64209) - Laboratory practice

Lab Work 5: Binary Classification

Instructions

To test the hypothesis that one of the diseases of the heart and cardiovascular system is related
to the sistolic (maximum) blood pressure, the researchers developed four different diagnostic
tests (methods) for measuring the blood pressure. All tests can measure the blood pressure in
the range between 70 mmHg and 170 mmHg (lower or higher values are not detected), and were
applied to measure the blood pressure in 2268 subjects, among which one half was diseased
(1134 subjects) and one half was healthy (1134 subjects). The results were stored in the file
labData.mat (e.g. structure D), in which the variable D.refData represents the reference data (value
of 0 represents a healthy subject, value of 1 represents a diseased subject), while the variable
D.testData represents the results of diagnostic tests (blood pressure in mmHg), with each row
i corresponding to a subject and each column j = 1...4 corresponding to a diagnostic test:

D.refData D.testData

i (i,1) (i,1) (i,2) (i,3) (i,4)

...
...

...
...

...
...

71 0 85.5 98.5 114.8 115.0

72 1 144.2 70.6 113.8 115.0

73 0 93.4 145.6 117.9 115.0
...

...
...

...
...

...

1. Write a function for the binary classification of the results:

function [oTP, oTN, oFP, oFN] = classifyData(iThreshold, iTestData, iRefData),

where the input argument iThreshold represents the classification threshold, iTestData is
the vector of the results of the diagnostic test, and iRefData is the vector of the reference
data. Output arguments oTP, oTN, oFP and oFN represent, respectively, the number of true
positive (TP), true negative (TN), false positive (FP) and false negative (FN) results.

Classify the data according to tNum different thresholds by equally distributing them
between the minimal threshold tMin = 70 mmHg and maximal threshold tMax = 170 mmHg.

2. Write a function for computing the ratios that evaluate the performance of the binary
classification:

function function [oTPR, oTNR, oFPR, oFNR] = computeRates(iTP, iTN, iFP, iFN),

where input arguments iTP, iTN, iFP and iFN represent, respectively, the number of true
positive (TP), true negative (TN), false positive (FP) and false negative (FN) results.
Output arguments oTPR, oTNR, oFPR and oFNR represent, respectively, the true positive rate
(TPR or sensitivity), true negative rate (TNR or specificity), false positive rate (FPR or
non-specificity) and false negative rate (FNR or non-sensitivity).

11

3. Write a function for computing the remaining values that also evaluate the performance
of the binary classification:

function function [oPPV, oNPV, oFDR, oACC] = computeValues(iTP, iTN, iFP, iFN),

where input arguments iTP, iTN, iFP and iFN represent, respectively, the number of
true positive (TP), true negative (TN), false positive (FP) and false negative (FN)
results. Output arguments oPPV, oNPV, oFDR and oACC represent, respectively, the positive
predictive value (PPV), negative predictive value (NPV), false discovery rate (FDR) and
classification accuracy (ACC).

4. Write a funciton for displaying the classification results:

function drawResults(iX, iY, iTitle, iLabelX, iLabelY),

where input arguments iX and iY represent, respectively, the values on x and y axes of
the display, iTitle represents the title of the display, and iLabelX and iLabelY represent,
respectively, the labels on x and y axes of the display.

The input arguments iX and iY should be matrices, where each row represents a different
classification threshold and each column represents a different diagnostic test. Display the
classification results for all diagnostic tests in the same coordinate system, and display
the legend with generic labels (data1, data2, data3, data4) by using the Matlab function
legend(’Location’, ’BestOutside’).

5. Write a function for computing the area under the curve (AUC):

function oAUC = computeAUC(iX, iY),

where input arguments iX and iY represent the curve in the form of values on x and y
axes, respectively, of the display, while the output argument oAUC represents the area
under the curve, computed according to the trapezoidal rule.

Questions

The report includes handwritten (without using the computer) answers to the following questi-
ons, while the required images can be printed and enclosed in the report.

1. Classify the results according to tNum = 20 different thresholds and enclose the images
showing the course of TPR, TNR, FPR and FNR against the classification threshold.

2. Classify the results according to tNum = 20 different thresholds and enclose the images
showing the course of PPV, NPV, FDR and ACC against the classification threshold.

3. Classify the results according to tNum = 20 different thresholds and enclose the image
showing the ROC for all diagnostic tests, and write down the corresponsing AUC values.
Basing on the AUC values, evaluate the success of each diagnostic test.

12

4. According to the obtained courses and curves, determine the optimal classification
threshold for each diagnostic test. Provide adequate arguments for your choices.

5. Which diagnostic test proved to perform best? What can you conclude about the test
with the completely diagonal ROC? What can you conclude about the test with the
almost diagonal ROC? Provide adequate arguments for your answers.

6. Set the classification threshold to 120 mmHg. For each diagnostic test, write down the
contingency table, and report the TPR, TNR, FPR and FNR, as well as the PPV, NPV,
FDR and ACC.

Additional Problems

The answers to the following questions do not need to be enclosed in the report, but should
serve for a better understanding of the topic.

Write a function for computing the classification threshold that results in a chosen classification
sensitivity:

function [oThreshold, oTPR, oFPR] = computeThreshold(iTPR, iTestData, iRefData),

where the input argument iTPR represents the chosen true positive rate (TPR or sensitivity),
iTestData is the vector of the results of the diagnostic test, and iRefData is the vector of the
reference data. The output argument oThreshold represents the threshold that results in the
chosen classification sensitifity, oTPR represents the actually achieved classification sensitivity,
while oFPR represents the actually achieved classification non-specificity.

Write down the resulting classification thresholds as well as the actually achieved classification
sensitivity and non-specificity when choosing classification sensitivities of 90.0%, 95.0% and
97.5%.

13

University of Ljubljana, Faculty of Electrical Engineering

Master’s study programme in Electrical Enginnering (level 2)

Biomedical Engineering - Biomedical Informatics (64209) - Laboratory practice

Lab Work 6: Electronic Health Record

Instructions

The electronic health record (EHR) is a concept of systematic collection of data related to health
of individual patients in an electronic form. Suppose that we have an EHR encoded with the
extensible markup language (XML), where the record notation is simplified (tags do not contain
attributes, the name of the tag is not repeated on the same level, the value of the tag is always
a text string), e.g. as:

<medications>

<medication2>

<name>Ultop</name>

<fullname>Ultop 10 mg hard capsules</fullname>

<usage>1 capsule each 24 hours</usage>

<code>040762</code>

<dateOfPrescription>

<dd>15</dd>

<mm>06</mm>

<yyyy>2012</yyyy>

</dateOfPrescription>

<dateOfExpiration>

<dd>06</dd>

<mm>07</mm>

<yyyy>2012</yyyy>

</dateOfExpiration>

</medication2>

</medications>

The notation in the form of a structure that is equivalent to the above mentioned XML is:

medications.medication2.name = ’Ultop’

medications.medication2.fullname = ’Ultop 10 mg hard capsules’

medications.medication2.usage = ’1 capsule each 24 hours’

medications.medication2.code = ’040762’

medications.medication2.dateOfPrescription.dd = ’15’

medications.medication2.dateOfPrescription.mm = ’06’

medications.medication2.dateOfPrescription.yyyy = ’2012’

medications.medication2.dateOfExpiration.dd = ’06’

medications.medication2.dateOfExpiration.mm = ’07’

medications.medication2.dateOfExpiration.yyyy = ’2012’

By applying XML parsing, your task is to convert the given XML record into the form of a
Matlab structure, then add a chosen sub-structure to the obtained structure, and finally convert
the resulting structure back into an XML record.

1. Load the XML record from the file sampleEHR eng.xml by using Matlab functions fopen(),
fread() and fclose().

15

2. Write a function for converting an XML record into the form of a structure:

function oStruct = xml2struct(iXml, iStruct, iTag),

where the input argument iXml represents the XML record, iStruct is the current
structure, while iTag is a cell structure with the names of all XML tags up to the current
tag. The output argument oStruct represents the new structure.

The function implementation has to enable recursive calls in the case of nested XML tags,
where the initial function call is EHR = xml2struct(XML, struct, []). Recursion is a code
programming technique, where the solution to the given problem consists of multiple
solutions to individual sub-problems. In practice, the function call is executed within the
function itself by using different arguments and ensuring a stop criterion.

By using this function, convert the XML record into the form of a structure.

3. Add the sub-structure medications.medication2, given in the introduction above, to the
obtained structure.

4. Write a function for converting a structure into the form of an XML record:

function oXml = struct2xml(iStruct, iXml, iOffset),

where the input argument iStruct represents the structure, iXml is the current XML
record, while iOffset is the whitespace offset of the current XML tag. The output
argument oXML represents the new XML record.

The function implementation has to enable recursive calls in the case of nested XML tags,
where the initial function call is XML = struct2xml(EHR, ’’, ’’). To move to a new line
in the XML record, use the ASCII code 10, i.e. char(10).

By using this function, convert the structure into the form of an XML record.

5. Save the XML record into the file updatedEHR.xml by using Matlab functions fopen(),
fwrite() and fclose().

16

Questions

The report includes handwritten (without using the computer) answers to the following questi-
ons, while the required images can be printed and enclosed in the report.

1. List the advantages and disadvantages of having data stored in the form of an XML
record. Provide adequate arguments for each advantage and disadvantage.

2. Write down a recursive version of the function for computing the factorial of the natural
number N :

function oValue = fact(iValue),

where the input argument iValue is the natural number N , and the output argument
oValue is the factorial of N , i.e. N !, defined as:

N ! = N · (N − 1) · (N − 2) · . . . · 2 · 1 =
N∏
i=1

i .

3. Write down an iterative version of the function from question No. 2.

Additional Problems

The answers to the following questions do not need to be enclosed in the report, but should
serve for a better understanding of the topic.

Generalize functions xml2struct() and struct2xml() so that they will enable the decoding of
the attribute type within each tag, which represents the type of the tag value, e.g.:

• tag <id type="number">123456</id> should represent a number, i.e. EHR.id = 123456,

• tag <dd type="string">12</dd> should represent a text string, i.e. EHR.dd = ’12’.

In the case the attribute does not exist for a specific tag, then the tag contains a nested XML re-
cord. To validate the generalized functions, use the XML record in the file sampleEHR attr eng.xml.

17

University of Ljubljana, Faculty of Electrical Engineering

Master’s study programme in Electrical Enginnering (level 2)

Biomedical Engineering - Biomedical Informatics (64209) - Laboratory practice

Lab Work 7: Image Edge Detection

Instructions

Image edge detection is one of the most frequently
applied concepts in the field of image processing and
analysis, and the Canny edge detector is one of the
most frequently applied techniques.

Your task is to implement a simplified Canny edge
detector by using the given graphical user inter-
face (GUI) that allows loading of a chosen grayscale
image, selecting the edge detection parameters (size
and standard deviation of the Gauss gradient filter,
and the value for thresholding), and saving of the
obtained results.

1. The given file getGradientFilter.m contains the declaration of the function for generating the
gradient operator of the Gaussian function:

function [oFilterX, oFilterY] = getGradientFilter(iN, iSigma),

where the input argument iN represents the size N = 2M + 1, and iSigma represents the
standard deviation σ of the gradient operator of the Gaussian function of size N × N ,
defined by the equation:

∇N(x, y) = ∇e−
x2+y2

2σ2 =

 − x
σ2 e
−x

2+y2

2σ2

− y
σ2 e
−x

2+y2

2σ2

 =

[
−x

−y

]
1

σ2
e−

x2+y2

2σ2 .

Output arguments oFilterX and oFilterY represent the gradient operators Cx(i, j) and
Cy(i, j) of the Gaussian function in x and y direction, respectively.

Replace the blind implementation in the given function with a working implemen-
tation, so that the output arguments will actually represent the gradient operators of
the Gaussian function according to the input arguments, which can be selected in the GUI.

2. The given file imageFiltering.m contains the declaration of the function for image filtering:

function [oMapX, oMapY] = imageFiltering(iImage, iFilterX, iFilterY),

where the input argument iImage represents the image, while iFilterX and iFilterY are
the operators Cx(i, j) and Cy(i, j) for image filtering in x and y direction, respectively.

19

Output arguments oMapX and oMapY represent the filtered input image gx(x, y) and gy(x, y)
in x and y direction, respectively. For each picture element (x, y) perform filtering as:

g(x, y) =
M∑

i=−M

M∑
j=−M

c(i, j)f(x+ i, y + j) .

Replace the blind implementation in the given function with a working implementation,
so that the output arguments will actually perform image filtering according to the input
arguments, obtained by using the function getGradientFilter().

3. The given file nonMaximaSuppression.m contains the declaration of the function for suppres-
sing non-maximal values:

function [oMapX, oMapY] = nonMaximaSuppression(iMapX, iMapY),

where input arguments iMapX and iMapY represent the image gradients gx(x, y) and gy(x, y)
in x and y direction, respectively, while output arguments oMapX and oMapY represent the
image gradient g′x(x, y) and g′y(x, y) in x and y direction, respectively, with suppressed
non-maximal values. Perform the suppression of non-maximal values by removing a
picture element if the magnitude of the gradient of at least one neighboring picture
element, from the point of view of the discrete gradient, is larger than the magnitude of
the gradient of the observed picture element.

Replace the blind implementation in the given function with a working implementation,
so that the output arguments will actually represent the image gradient with suppressed
non-maximal values according to the input arguments, obtained by using the function
imageFiltering().

4. The given file imageThresholding.m contains the declaration of the function for image thre-
sholding:

function oMap = imageThresholding(iMapX, iMapY, iThreshold),

where input arguments iMapX and iMapY represent the image gradient g′x(x, y) and g′y(x, y)
in x and y direction, respectively, with suppressed non-maximal values, while iThreshold

represents the threshold T on the interval between 0 and 1. The output argument oMap

represents the thresholded values u(x, y). Perform the thresholding by assigning the value
of 1 to picture elements with values above the thresold, and the value of 0 to the remaining
picture elements:

u(x, y) =

{
1; if f(x, y) > T ,

0; if f(x, y) ≤ T .
Replace the blind implementation in the given function with a working implementation,
so that the output argument will actually represent the thresholded image according to
the input arguments, obtained by using the function nonMaximaSuppression(), while the
threshold can be selected in the GUI.

Validate the implemented technique for image edge detection on images 01 horse.bmp, 02 brain.bmp

and 03 vertebra.bmp. Save the results as JPEG images by adequate selection and pressing the
button “Save image” in the GUI.

20

Questions

The report includes handwritten (without using the computer) answers to the following questi-
ons, while the required images can be printed and enclosed in the report.

1. For image 02 brain.bmp enclose the picture of the original image, the pictures of the gradient
operator in x and y directions, the pictures of image gradients in x and y directions,
the picture of image gradient magnitude, the picture of image gradient magnitude with
suppressed non-maximal values, the picture of the thresholded image and the picture with
superimposed edges. Write down the selected values for filter size and standard deviation
as well as the selected value for thresholding.

2. For image 03 vertebra.bmp enclose the picture of the original image, the pictures of
the gradient operator in x and y directions, the pictures of image gradients in x and
y directions, the picture of image gradient magnitude, the picture of image gradient
magnitude with suppressed non-maximal values, the picture of the thresholded image and
the picture with superimposed edges. Write down the selected values for filter size and
standard deviation, as well as the selected threshold.

3. Provide adequate arguments for you selection of values for the size and standard deviation
of the filter in the form of the gradient operator of the Gaussian function, as well as for
the selected threshold.

4. How was the implemented technique simplified in comparison to the “true” Canny edge
detector?

Additional Problems

The answers to the following questions do not need to be enclosed in the report, but should
serve for a better understanding of the topic.

Modify the function imageThresholding(), so that the input argument iThreshold the upper
threshold, while the lower threshold is defined as the half of the upper threshold. Then perform
the hysteresis thresholding, which retains all picture elements with the grayscale intensities
above the upper threshold, while the picture elements with the grayscale intensities between
the lower and upper threshold are retained only in the case when the grayscale intensities of
the neighboring picture elements are above the upper threshold:

>> % hysteresis image thresholding

>> function oMap = imageThresholding(iMapX, iMapY, iThreshold)

>> % upper and lower threshold

>> iHighT = iThreshold;

>> iLowT = iHighT/2;

>> ...

21

University of Ljubljana, Faculty of Electrical Engineering

Master’s study programme in Electrical Enginnering (level 2)

Biomedical Engineering - Biomedical Informatics (64209) - Laboratory practice

Lab Work 8: Sequence Alignment

Instructions

Your task is to implement the Needleman-Wunsch algorithm for the determination of the global
optimal alignment of sequences (e.g. nucleotides in DNA or amino acids in proteins). The
algorithm is a special case of the technique known as dynamic programming, which is used to
solve relatively complex problems by dividing them into easier sub-problems.

1. Write a function for the determination of the score matrix M and trace matrix T for
alignment of sequences a and b:

function [oScrM, oTrcM] = computeMatrices(iSeqA, iSeqB, iSubS, iSubM, iGapP),

where input arguments iSeqA and iSeqB represent sequences a and b, respectively, iSubS
represents the symbols in the selected order (e.g. ’AGCT’), iSubM represents the substitution
matrix S with symbols in the same order, and iGapP represents the gap penalty P . Output
arguments oScrM and oTrcM represent the score and trace matrices M and T , respectively.

The score matrix M has to be initialized with zeros, while the trace matrix T has to be
initialized with initial directions. The score M(i, j) and trace T (i, j) are then defined by
the following recursive formula:

M(i, j) = max

M(i− 1, j − 1) + S(a(i), b(j)) ↖ (diagonal direction or D)

M(i, j − 1) + P ← (left direction or L)

M(i− 1, j) + P ↑ (upward direction or U)

In the case that multiple values are simultaneously maximal, the trace matrix T is assigned
only one direction by taking into account the pre-defined order, i.e. first the diagonal di-
rection (↖ or D), then the left direction (← or L) and finally the upward direction (↑ or U).

2. Write a function for the determination of the optimally aligned sequences:

function [oSeqA, oSeqB] = computeSequences(iSeqA, iSeqB, iTrcM),

where input arguments iSeqA and iSeqB represent sequences a in b, respectively, and
iTrcM represents the trace matrix T . Output arguments oSeqA and oSeqB represent the
optimally aligned sequences a and b, respectively.

The optimally aligned sequences can be found by tracing the directions in the trace
matrix T , starting from the last element in the matrix.

3. Write a function for computing the score of the optimal alignment:

function oScr = computeScore(iSeqA, iSeqB, iSubS, iSubM, iGapP),

where input arguments iSeqA and iSeqB represent optimally aligned sequences a and
b, respectively, iSubS represents the symbols in the selected order (e.g. ’AGCT’), iSubM

represents the substitution matrix S with symbols in the same order, and iGapP represents
the gap penalty P . The output argument oScr represents the optimal alignment score.

23

Validate the algorithm implementation by finding out the optimal alignment of two nucleotide
(DNA) sequences a = GGATCGA and b = GAATTCAGTTA, for which the solution is given by
aopt = GGA-TC-G–A and bopt = GAATTCAGTTA with the optimal alignment score of 3 when using
substitution matrix S and gap penalty P :

S A G C T

A 2 −1 −1 −1

G −1 2 −1 −1

C −1 −1 2 −1

T −1 −1 −1 2

P = −2

S∗ A G C T

A 2 1 −1 −1

G 1 2 −1 −1

C −1 −1 2 1

T −1 −1 1 2

P ∗ = 0

Questions

The report includes handwritten (without using the computer) answers to the following questi-
ons, while the required images can be printed and enclosed in the report.

1. Determine the optimal alignment of nucleotide (DNA) sequences a = ACA and b = CGACT

by using the substitution matrix S and gap penalty P . Write down the score matrix M ,
the trace matrix T (with arrows and marked optimal trace) and the score of the optimal
alignment.

2. Determine the optimal alignment of nucleotide (DNA) sequences a = CTCTAGCATTAG

and b = GTGCACCCA by using the substitution matrix S and gap penalty P . Write down
the score of the optimal alignment.

3. Determine the optimal alignment of sequences from Question 1 by using the substitution
matrix S∗ and gap penalty P ∗. Write down the score matrix M , the trace matrix T (with
arrows and marked optimal trace) and the score of the optimal alignment.

4. Determine the optimal alignment of sequences from Question 2 by using the substitution
matrix S∗ and gap penalty P ∗. Write down the score of the optimal alignment.

5. What kind of simplifications were adopted for this implementation?

Additional Problems

The answers to the following questions do not need to be enclosed in the report, but should
serve for a better understanding of the topic.

For this algorithm implementation, we ignored the fact that there may exist multiple optimally
aligned sequences that result from multiple choices in the trace matrix T due to multiple maximal
values in the recursive formula for the score matrix M . Modify the existing implementation so
that it will allow the determination of all existing optimally aligned sequences.

24

c© 2012–2014 Tomaž Vrtovec

http://lit.fe.uni-lj.si/BMI/
http://lit.fe.uni-lj.si/gradivo/BMI-LabVaje-eng.pdf

	Lab Work 1: Introduction to Matlab
	Lab Work 2: Electrocardiography (ECG)
	Lab Work 3: The DICOM Standard
	Lab Work 4: Cryptography
	Lab Work 5: Binary Classification
	Lab Work 6: Electronic Health Record
	Lab Work 7: Image Edge Detection
	Lab Work 8: Sequence Alignment

